

MODELS 682C05 & (CS)649AX3

BEARING FAULT DETECTORS

- Detects impacting associated with bearing faults, including spalling, cracking and lubrication problems
- Outputs a 4-20 mA current output signal for peak acceleration
- Operates with PLC, DCS, SCADA, alarm and control systems

TYPICAL APPLICATIONS

Bearings in:

- Motors
- Fans
- Pumps

Bearing faults create metal-to-metal impacts that manifest in vibration data as high-frequency, high-amplitude peaks. Typical vibration transmitters that utilize the RMS process cannot accurately identify these peaks. As an alternative, IMI Sensors has developed two products with a 4-20 mA output that are specifically designed to identify high-frequency, high-amplitude peaks.

BEARING FAULT DETECTOR FUNCTIONALITY AND FEATURES

Bearing Fault Detector (Model 682C05): The Bearing Fault Detector offers three simultaneous signals- raw analog voltage output, current output proportional to overall vibration and current output proportional to true peak acceleration. The signal processing begins with a 100 mV/g VAC signal from a remotely-mounting ICP[®] accelerometer.

Output	Purpose	Signal Processing	
0-5 VAC Analog Voltage	Spectral (FFT) analysis for fault diagnostics	VAC signal is re-transmitted through the BFD's BNC jack unprocessed	
4-20 mA Current RMS/Peak Acceleration RMS/Peak Velocity	Ideal indicator of faults that occur at machine running speeds, such as imbalance, misalignment and looseness.	VAC signal is passed through a 10Hz HP filter/1 kHz LP filter and then an optional integration circuit (acceleration to velocity). A true RMS conversion circuit converts VAC to VDC and then a gain stage scales the signal to one of the field-selectable full scale measurement ranges. Lastly, the signal passes through an optional gain stage (RMS to peak) and then a VDC-to-current converter.	
4-20 mA Current True Peak Acceleration	Ideal indicator of impacting or high- frequency energy bursts (ie. early- stage bearing and gear faults, such as spalling, friction and fatigue).	VAC signal is passed through 1 or 5 kHz HP filter (selectable) 100 kHz LP filter and then rectifier and sample & hold circuit to convert VAC to VDC. Highest amplitude that occurs within a 7-sec window is captured. Lastly, the signal passes through a VDC-to-current converter.	

Bearing Fault Detector PLUS (Model [CS]649AX3): The Bearing Fault Detector Plus offers five non-simultaneous outputs- RMS acceleration, true peak acceleration, compensated peak acceleration, Crest Factor and Crest Factor Plus. The signal processing begins with a 100 mV/g VAC signal from an integral pellet ICP[®] accelerometer.

Output	Purpose	Signal Processing		
4-20 mA Current RMS Acceleration	Ideal indicator of faults that occur at machine running speeds, such as imbalance, misalignment and looseness.	VAC signal is passed through: 2500Hz HP filter/ 10 kHz LP filter and then a true RMS conversion circuit to convert the VAC to VDC. A gain stage then scales the signal to the field-selectable full scale measurement range. Lastly, the signal passes through a VDC-to-current converter.		
4-20 mA Current True Peak Acceleration	Ideal indicator of impacting or high- frequency energy bursts (ie. early-stage bearing and gear faults, such as spalling, friction and fatigue).	VAC signal is passed through: 250 kHz HP filter/ 10 kHz LP filter and then a rectifier and sample & hold circuit to convert the VAC to VDC. Highest amplitude that occurs within a 1-sec window is captured. Lastly, the signal passes through a VDC-to-current converter.		
4-20 mA Current Compensated Peak Acceleration	Ideal indicator when user has various size/speed machinery on which they want to monitor bearings with a single alarm limit.	See True Peak Acceleration section of this table. Normalized ratio is calculated based on bearing speed and diameter. VDC converted to current. The output is a unit-less severity scale from 1 to 16.		
4-20 mA Current Crest Factor	Ideal indicator for variable speed machinery because Crest Factor does not vary much at different speeds.	See RMS Acceleration and True Peak Acceleration sections of this table. Normalized ratio is calculated. VDC converted to current. The output is a unit-less severity scale from 1 to 16.		
4-20 mA Current Crest Factor Plus	Ideal indicator for variable speed machinery when trending is not possible or not desired as the value will always increase over the bearing's entire life cycle as its condition worsens.	See RMS Acceleration, True Peak Acceleration and Crest Factor sections of this table. Normalized ratio is calculated. The three components are weighted differently such that the sum of the three always increases as bearing condition gets worse, even if one value decreases. VDC converted to current. The output is a unit-less severity scale from 1 to 16.		

BEARING FAULT DETECTOR (MODEL 682C05)

SPECIFICATIONS					
Model	682C05				
Performance					
Channels	1				
Sampling Time	7 sec				
Input Signal	100 mV/g 10.2 mV/m/s ²				
Frequency Range (Overall Vibration)	10 to 1000 Hz				
Frequency Range (True Peak Acceleration)	1 Hz to 100 kHz or 5 Hz to 100 kHz				
Output Signal (AC Vibration)	100 mV/g 10.2 mV/m/s ²				
Output Signal (Overall Vibration)	4 to 20 mA				
Output Signal (True Peak Acceleration)	4 to 20 mA				
Output Range (Overall Vibration-Acceleration)	5.0, 10.0, 20.0 g pk or rms				
Output Range (Overall Vibration-Velocity)	0.5, 1.0, 2.0 ips pk or rms				
Output Range (True Peak Acceleration)	±50 g pk (± 491 m/s²)				
Environmental					
Temperature Range	+32 to +159 °F 0 to +70 °C				
Humidity Range (Non-Condensing)	<95 %				
Electrical					
Power Required	24 VDC				
Current Draw (Max)	150 mA				
Settling Time (Max)	1 min				
Excitation Voltage (To Sensor) (± 1VDC)	24 VDC				
Constant Current Excitation (To Sensor) (± 1mA)	4 mA				
Physical					
Housing Material	Polyamide				
Status Indicator (Power On)	Green LED				
DIN Rail Mount	1.38 in 35 mm				
Electrical Connector-Input/Output/Power	Removable Screw Terminals				
Electrical Connector-Raw, Analog Vibration Output	BNC Jack				
Screw Terminal Wire Size	24-14 AWG				
Weight	5.2 oz 145.2 gm				

BEARING FAULT DETECTOR PLUS (MODEL CS649AX3)

SPECIFICATIONS					
Model Number	(CS)649A03	(CS)649A93			
Performance					
Sampling Time	1 sec				
Output Signal	4-20 mA				
Output Range (True Peak Acceleration)	0-2 to 0-50 g				
Output Range (RMS Acceleration)	0-2 to 0-50 g				
Output Range (Crest Factor)	1 to 16				
Output Range (Crest Factor Plus)	1 to 16				
Output Range (Peak Acceleration with Correction)	1 to 16				
Peak Acceleration with	1.57 to 19.69 in				
Correction- Bearing Diameter	40 to 500 mm				
Correction- Bearing Rotation Speed	10 to 80 Hz				
Linearity (Loop Powered)	10%				
Environmental					
Overload Limit (Shock)	5000 g pk 49050 m/s² pk				
Temperature Range	-40 to 212 °F -40 to 100 °C				
Hazardous Area Approved	CSA (CS prefix only)				
Electrical					
Excitation Voltage	15 to 30 VDC				
Load Resistance	50(Vs-15) Ohm				
Electrical Isolation	>10 ⁸ Ohm				
Physical					
Sensing Element	Piezoelectric Accelerometer				
Housing Material	Stainless Steel				
Sealing	Welded Hermetic				
Mounting Thread	1/4-28 UNF	1/4 - 18 NPT			
Mounting Torque	3 to 5 ft-lb 4 to 7 Nm				
Electrical Connector	2-Pin MIL-C-5015	36 " Flying Leads			
Electrical Connector Position	Тор				
Electrical Connections (Pin A)	4-20 mA Pos (+)				
Electrical Connections (Pin B)	4-20 mA Neg (-)				
Weight	5.7 oz 162 gm	7.86 oz 223 gm			

IMI SENSORS

A PCB DIVISION

(CS)649A03

(CS)649A93

3425 Walden Avenue, Depew, NY 14043 USA

pcb.com/imi-sensors | imi@pcb.com | 800 959 4464 | +1 716 684 0003

© 2021 PCB Piezotronics - all rights reserved. PCB Piezotronics is a wholly-owned subsidiary of Amphenol Corporation. Endevco is an assumed name of PCB Piezotronics of North Carolina, Inc., which is a wholly-owned subsidiary of PCB Piezotronics, Inc. Accumetrics, Inc. and The Modal Shop, Inc. are wholly-owned subsidiaries of PCB Piezotronics, Inc. The Modal Shop, Inc. are wholly-owned subsidiaries of PCB Piezotronics, Inc. The Modal Shop, Inc. are wholly-owned subsidiaries of PCB Piezotronics, Inc. Ind Sensors and Larson Davis are Divisions of PCB Piezotronics, Inc. Except for any third party marks for which attribution is provided herein, the company names and product names used in this document may be the registered trademarks or unregistered trademarks of PCB Piezotronics, Inc., PCB Piezotronics of North Carolina, Inc. (d/b/a Endevco), The Modal Shop, Inc. or Accumetrics, Inc. Detailed trademark ownership information is available at www.pcb.com/trademarksmership.