

SERIES **260 & 261**

3-COMPONENT DYNAMIC FORCE SENSORS

Standard ranges available up to 10,000 lbf in the Z axis and 4000 lbf in the X and Y axis

Hermetically Sealed Stainless Steel Construction

ICP® and Charge Output Versions

TYPICAL APPLICATIONS

Automotive Chassis and Other Vehicle Dynamic Measurements

Monitor Cutting Tool Forces and Detect Tool Wear

Provide Feedback for Force Limited Vibration Testing

Measure Input Forces for Modal Analysis and Structural Testing

Assess and Study Biomechanic Ability, Chart Therapy Progress

Monitor Machine and Engine Mounts for Imbalance or Looseness

Measure Impact Forces During Drop Testing and Crash Testing

CONDUCT SIMULTANEOUS FORCE MEASUREMENTS IN THREE ORTHOGONAL DIRECTIONS

Three-component dynamic force sensors are offered in both ICP[®] and charge output configurations for dynamic and quasi-static force measurement applications. Each utilizes an array of precisionaligned, quartz sensing crystals. Measurements along the z-axis are proportional to applied compression, tension and impact forces. Measurements along the x and y axes are proportional to shear forces that are imposed upon preloaded crystals by the test fixture.

ICP[®] models contain built-in microelectronic signal conditioning circuitry to provide clean, low-impedance output signals that can be transmitted over low cost cables and in adverse, industrial environments. Multi-pin connectors facilitate a single point hookup with common, multi-conductor cable. Charge output styles achieve higher temperature operation, and are suitable for applications requiring flexible setup and maximum signal-to-noise.

Versions are available with ranges up to 10,000 lb (45 kN) in the z-axis (perpendicular to top surface) and to 4000 lb (18 kN) in the x- and y-axes. Both ICP[®] and charge output styles are available. Metric mounting holes are also available. The 261 series features electrical isolation.

As with all PCB[®] instrumentation, these sensors are complemented with toll-free applications assistance, 24-hour customer service, and are backed by a no-risk policy that guarantees satisfaction or your money refunded.

3-COMPONENT ICP® AND CHARGE OUTPUT QUARTZ RING STYLES

COMPONENT QUARTZ FORCE SENSORS												
			ICP®		Charge Output							
Model Number		260A01	260A02	260A03	260A11	260A12	260A13					
Performance												
Compression or Tension Bange (z-axis)	lb (N)	1000 (4450)	1000 (4450)	10k (45k)	1000 (4450)	1000 (4450)	10k (45k)					
Shear Bange (x-, y-axis)	Ib (N)	500 (2220)	1000 (4450)	4000 (18k)	500 (2220)	1000 (4450)	4000 (18k)					
Maximum Compression or Tension (z-axis)	Ib (N)	1320 (5870)	1320 (5870)	11k (49k)	1320 (5870)	1320 (5870)	11k (49k)					
Maximum Shear (x-, y-axis)	Ib (N)	660 (2940)	1100 (4890)	4400 (20k)	660 (2940)	1100 (4890)	4400 (20k)					
Constitute (1, 200%) (7, avia)		2.5 mV/lb	2.5 mV/lb	0.25 mV/lb	15 pC/lb							
Sensitivity $(\pm 20\%)$ (2-dxis)	_	0.56 mV/N	0.56 mV/N	0.06 mV/N	3.4 pC/N							
Sensitivity (± 20%) (x-, y-axis)	-	10 mV/lb 2.25 mV/N	5 mV/lb 1.12 mV/N	1.25 mV/lb 0.28 mV/N	32 pC/lb 7.2 pC/N							
Resolution (broadband) (z-axis) (x-, y-axis)	lb (N) rms	0.006 (0.027) 0.002 (0.009)	0.005 (0.022) 0.003 (0.013)	0.05 (0.22) 0.01 (0.045)	see note [2]							
Amplitude Linearity	% FS			:	s1							
Cross-Talk Fx ÷ Fy Fx, Fy ÷ Fz	%	±3 ±5										
Upper Frequency Limit	Hz	9	0k	39k	90k 3!		39k					
Low Frequency Response (-5%) (z-axis) (x-, y-axis)	Hz Hz		0.01 0.001		see note [2]							
Environmental Specifications												
Temperature Range	°F °C	-65 to +250 -54 to +121			-100 to +350 -73 to +177							
Electrical Specifications		1										
Discharge Time Constant [1] (z-axis)	essende		≥50			000 moto [0]						
(x-, y-axis)	seconds	≥500			see note [2]							
Output Impedance	ohm	≤100			N/A							
Output Bias Voltage	+VDC	8 to 14			N/A							
Voltage Excitation	+VDC	20 to 30			N/A							
Constant Current Excitation	mA	2 to 20			N/A							
Capacitance (all axes)	pF	N/A			18	30	70					
Insulation Resistance	ohm	N/A			>1012							
Polarity (in direction of markings)		positive negative										
Physical Specifications					1							
Recommended Pre-Load [3]	lb (N)	5000 (22k)	10k (44.5k)	40k (178k)	5000 (22k)	10k (44.5k)	40k (178k)					
Connector	type		4-pin Jack			(3) 10-32 Jack						
Stiffness (z-axis) (x-, y-axis)	lb/µin (kN/µm)	10 (1.75) 4 (0.70)	19 (3.3) 6 (1.0)	39 (7) 11 (2)	10 (1.75) 4 (0.70)	19 (3.3) 6 (1.0)	39 (7) 11 (2)					
Sealing	type	hermetic weld										
Material	type	17-4 stair			nless steel							
Maximum Allowable Torque (z-axis)	ft-lb (N-m)	14 (19)	40 (54)	240 (325)	14 (19)	40 (54)	240 (325)					
Maximum Allowable Bending Moment (x-, y-axis)	ft-lb (N-m)	13 (17.6)	70 (94)	325 (441)	13 (17.6)	70 (94)	325 (441)					
Weight	oz (gm)	0.93 (26)	1.59 (45)	9.6 (271)	0.87 (24.6)	1.5 (42.5)	9.9 (280)					
Supplied Accessories	1	I			1							
Mounting Stud (beryllium-copper)	model	081A70 M081A70	081A74 M081A74	081A71 M081A71	081A70 M081A70	081A74 M081A74	081A71 M081A71					
Mounting Stud Thread	size	5/16-24 M8x1.25	1/2-20 M12x1.25	//8-14 M24x3	5/16-24 M8x1.25	1/2-20 M12x1.25	//8-14 M24x3					
Anti-Friction Washer	model	082B02	082M12	082B06	082B02	082M12	082B06					
Pilot Bushing	model	083A10	083A13	083A11	083A10	083A13	083A11					
Optional Models		1			I							
Reverse Shear Polarity	model		-		260A31	260A32	260A33					

Notes: [1] The Discharge Time Constant (DTC) determines low frequency response according to the relationship $f-5\%=3/(2\pi(DTC))$. Sensors accurately follow transient events lasting a few percent of the DTC. For square wave events, the DTC should be 100 times the event duration. For ramp shape events, the DTC should be 50 times the event duration and for a half sine pulse the DTC should be 25 times the pulse duration. To ensure measurement system compatibility, use DC coupled or Long Time Constant signal conditioners for long duration transient measurements. [2] Resolution, System Discharge Time Constant and Low Frequency range are dependent upon sensor cable and signal conditioning used. [3] Recommended pre-load is required to meet published specification and calibration.

3-COMPONENT ICP® AND CHARGE OUTPUT FORCE LINK STYLES

Model 261B01

Model 261B11

Model 261B02

Model 261B12

Model 261B03

Model 261B13

3-COMPONENT QUARTZ FORCE LINKS											
		ICP®			Charge Output						
Model Number		261B01	261B02	261B03	261B11	261B12	261B13				
Performance											
Compression or Tension Range (z-axis)	lb (N)	1000 (4450)	1000 (4450)	10k (45k)	1000 (4450)	1000 (4450)	10k (45k)				
Shear Range (x-, y-axis)	lb (N)	500 (2220)	1000 (4450)	4000 (18k)	500 (2220)	1000 (4450)	4000 (18k)				
Maximum Compression or Tension (z-axis)	lb (N)	1320 (5870)	1320 (5870)	11k (49k)	1320 (5870)	1320 (5870)	11k (49k)				
Maximum Shear (x-, y-axis)	lb (N)	660 (2940)	1000 (4890)	4400 (20k)	660 (2940)	1100 (4890)	4400 (18k)				
Sensitivity (± 20%) (z-axis)	-	2.5 mV/lb 0.56 mV/N	2.5 mV/lb 0.56 mV/N	0.25 mV/lb 0.06 mV/N	15 pC/lb 3.4 pC/N						
Sensitivity (± 20%) (x-, y-axis)	_	10 mV/lb 2.25 mV/N	5 mV/lb 1.1 mV/N	1.25 mV/lb 0.28 mV/N	32 pC/lb 7.2 pC/N						
Resolution (broadband) (z-axis) (x-, y-axis)	lb (N) rms	0.006 (0.027) 0.002 (0.009)	0.005 (0.022) 0.003 (0.013)	0.05 (0.222) 0.01 (0.040)	see note [2]						
Amplitude Linearity	% FS			5	≤1						
Cross-Talk Fx ÷ Fy Fx, Fy ÷ Fz	%	±3 ±5									
Low Frequency Response (-5%) (z-axis) (x-, y-axis)	Hz Hz		0.01 0.001		see note [2]						
Environmental Specifications	·										
Temperature Range	°F °C	-65 to +250 -54 to +121			-100 to +350 -73 to +177						
Electrical Specifications											
Discharge Time Constant [1] (z-axis) (x-, y-axis)	seconds		≥50 ≥500		see note [2]						
Output Impedance	ohm	≤100			N/A						
Output Bias Voltage	+VDC	8 to 14			N/A						
Voltage Excitation	+VDC	20 to 30			N/A						
Constant Current Excitation	mA	2 to 20			N/A						
Capacitance (all axes)	pF	N/A			18	30	70				
Electrical Isolation	ohm	≥108			≥10 ⁸						
Polarity (in direction of markings)	-	positive negative									
Physical Specifications			A size la sh			(0) 10 00 11-					
Connector	туре	4-pin Jack		(3) 10-32 Jack							
(x-, y-axis)	lb/µin (kN μm)	4.9 (860) 1.9 (0.33)	2.9 (0.51)	5.5 (0.96)	4.9 (860) 1.9 (0.33)	2.9 (0.51)	5.5 (0.96)				
Stiffness (rz-axis) (rx-, ry-axis)	lbf*in/radian (N*m/radian)	3.4E5 (3.8E4) 7.5E5 (8.5E4)	9.4E5 (1.1E5) 2.8E5 (3.2E5)	7.1E6 (8.0E5) 1.7E7 (1.9E6)	3.4E5 (3.8E4) 7.5E5 (8.5E4)	9.4E5 (1.1E5) 2.8E5 (3.2E5)	7.1E6 (8.0E5) 1.7E7 (1.9E6)				
Coupled Stiffness (x-ry-, y-rx-axis)	lbf*in/µin (N*m/µm)	1.0 (4.4)	2.5 (11)	7.9 (35)	1.0 (4.4)	2.5 (11)	7.9 (35)				
Sealing	type	hermetic weld									
Material	type	17-4 stainless steel									
Maximum Allowable Torque (z-axis)	ft-lb (N-m)	14 (19)	40 (54)	240 (325)	14 (19)	40 (54)	240 (325)				
Maximum Allowable Bending Moment (x-, y-axis)	ft-lb (N-m)	13 (17.6)	70 (95)	325 (441)	13 (17.6)	70 (94)	325 (441)				
Weight	oz (gm)	13.6 (386)	34.4 (975)	108.7 (3080)	13.6 (386)	34.4 (975)	108.7 (3080)				
Uptions	prefix	M (metric)									

Notes: [1] The Discharge Time Constant (DTC) determines low frequency response according to the relationship $f-5\%=3/(2\pi(DTC))$. Sensors accurately follow transient events lasting a few percent of the DTC. For square wave events, the DTC should be 100 times the event duration. For ramp shape events, the DTC should be 50 times the event duration and for a half sine pulse the DTC should be 25 times the pulse duration. To ensure measurement system compatibility, use DC coupled or Long Time Constant signal conditioners for long duration transient measurements. [2] Resolution, System Discharge Time Constant and Low Frequency range are dependent upon sensor cable and signal conditioning used.

4-CHANNEL, LINE-POWERED, ICP® SENSOR SIGNAL CONDITIONER

MODEL 482C15

Sensor Input Type: ICP[®], Voltage Voltage Gain: x1, x10, x100 Adjustable ICP[®] current Optional input filtering

4-CHANNEL, LINE-POWERED, ICP® & CHARGE SENSOR SIGNAL CONDITIONER

MODEL 482C54

Sensor Input Type: ICP[®], Charge Voltage Gain: x0 to x200 Gain Frequency Range (-5%): 0.05 to 75000 Hz DC Power: +9 to +18 VDC

8-CHANNEL, LINE-POWERED, ICP® SENSOR SIGNAL CONDITIONER

MODEL 483C15

Sensor Input Type(s): ICP[®], Voltage Voltage Gain (±1%): x1, x10, x100 Optional input filtering Power Required: AC Power

8-CHANNEL, LINE-POWERED, ICP® & CHARGE SENSOR SIGNAL CONDITIONER

MODEL 483C30

Sensor Input Type(s): ICP[®], Voltage, Charge Voltage Gain: x0.1 to x200 TEDS Sensor Support: Yes Power Required: AC Power

CE

CE

CE

PCB PIEZOTRONICS

3425 Walden Avenue, Depew, NY 14043 USA

pcb.com | info@pcb.com | 800 828 8840 | +1 716 684 0001

© 2023 PCB Piezotronics - all rights reserved. PCB Piezotronics is a wholly-owned subsidiary of Amphenol Corporation. Endevco is an assumed name of PCB Piezotronics of North Carolina, Inc., which is a wholly-owned subsidiary of PCB Piezotronics, Inc. Accumetrics, Inc. and The Modal Shop, Inc. are wholly-owned subsidiary of PCB Piezotronics, Inc. IMI Sensors and Larson Davis are Divisions of PCB Piezotronics, Inc. Except for any third party marks for which attribution is provided herein, the company names and product names used in this document may be the registered trademarks or unregistered trademarks of PCB Piezotronics, Inc., PCB Piezotronics of North Carolina, Inc. (d/b/a Endevco), The Modal Shop, Inc. or Accumetrics, Inc. Detailed trademark ownership information is available at www.pcb.com/trademarkownership.