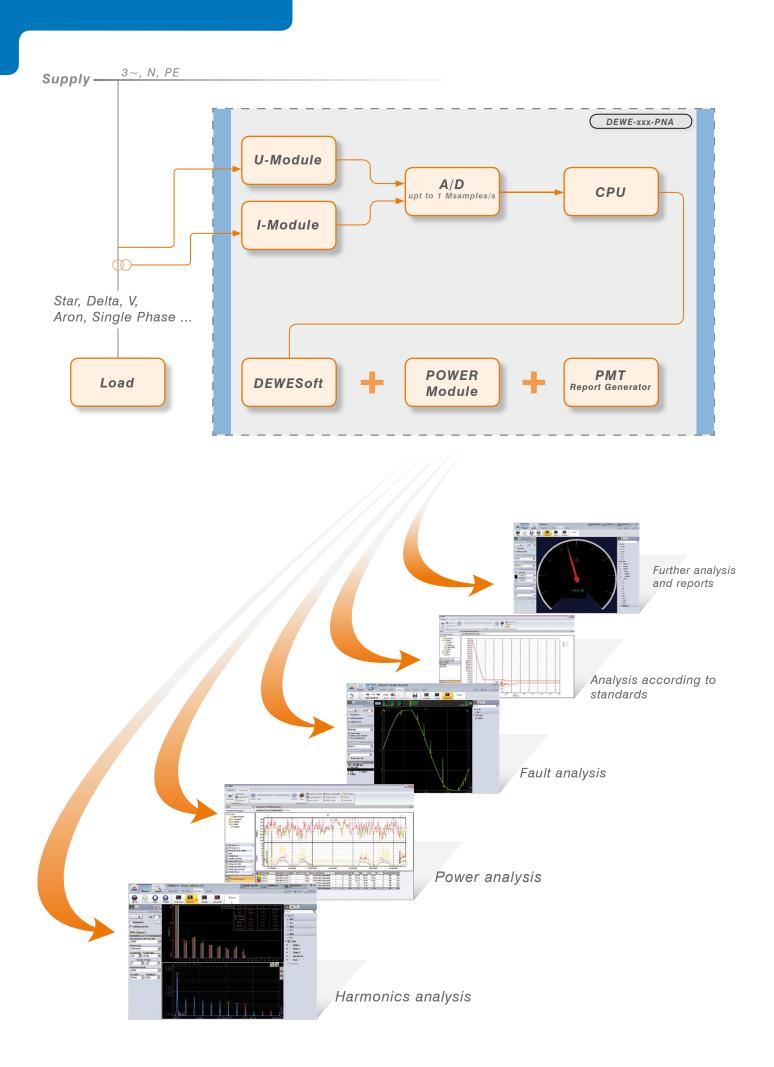


Automotive **Energy & Power Analysis** Aerospace & Defense Transportation General Test & Measurement

Power Network Analysis

DEWE-PNA

The DEWE-PNA systems are energy net analyzers which can persecute power quality analysis following exact standards and a lot more beyond that. The combination of high-capacity measurement software and flexible report generators enables the user to solve nearly every task in the field of energy measurement.


Another advantage is the configuration of the instruments. On the one side, we have the type DEWE-570 developed for the technician on site - stable, isolated and easy to operate. On the other side, there is the DEWE-module-based instrument such as the DEWE-2600-PNA. Its perfect flexibility of the hardware also allows complex applications in the fields of engineering and development.

Exact measurements according to IEC-61000-4-30 Class A, the power quality measurement standard, are also an absolute necessity and characteristics of our instruments.

Key Functions

- **EN50160**
- 🗕 IEC61000-4-30 Class A
- Power rating
- Harmonics, including 2-9 kHz
- Interharmonics
- Flicker
- Symmetrical components
- Frequency
- DISDIP/Unipede statistics
- CBEMA/ITIC curve



The DEWETRON Power Quality Analyzers

EN50160 and other Norms

Due to the changing market power quality analyzes are getting more and more important. On the one side, the increasing use of electronic consumers causes system perturbations. On the other side, the number of blackouts has grown recently. Early detection of shortages is therefore necessary and trend analyzes of various parameters can be helpful. Additionally, the obligation to prove the quality of the power supply system has changed and commercial aspects are also getting more and more important.

Disturbance Analysis

Simple recordings of voltage are source for the interpretation of power supply. In order to be able to be more precise and find solutions, it is not sufficient to calculate the voltage by means of average values of 10 minutes. Transient recorders with acquisition rates of Mega Hz even detect fastest disturbance peaks and are essential for the exact analysis.

Flicker and More

The standard software package includes flicker, unbalance, calculation of power and frequency etc. as well as a report generator with which one can print pre-defined reports (e.g. EN50160) on the one side and create individual reports on the other side.

Harmonics Analysis

The topic harmonics also becomes a new important aspect. If you have done the analysis of up to the 25th or even 50th harmonics, you can now go far beyond that. The frequency spectrum of 2-9 Hz has been redefined and in the future it will be analyzed in 200 Hz bands. The combination of this new standard and the formerly used harmonics standards is the main task of up-to-date power quality analyzers. DEWETRON has acted on this subject by creating the very latest generation of software and covering the whole spectrum of harmonics, interharmonics, frequency bands and grouping methods. Standard measurements with pre-defined and standardised setups are included or individual settings can be done by the users themselves.

Energy Analysis

The consumption of energy as well as the energy costs are rising. The reduction of energy costs is hence one major topic of interest. Treaties and prices are relevant – the effective consumption as well. In order to be able to reduce the consumption, one has to know the exact energy consumption and the internal power flow.

In order to be able to measure this, multi-channel measurement instruments are necessary. Using these instruments one can measure the consumption on several lines at the same time. This can also be done in parallel ways in different distribution boxes or even buildings.

With the help of the report generator one can create simple reports on power flow and distribution of energy consumption. The export interfaces support a quick exchange of data with other analysis software packages.

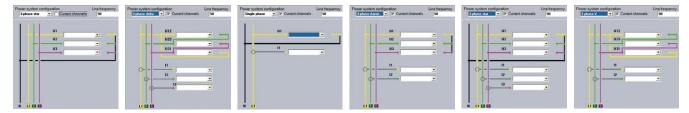
PNA Instruments

PRELIMINARY

		DEWE-571-PNA DEWE-571-PNA-1MS	DEWE-571-PNA-4U12I	DEWE-638-PNA				
Dynamic analog input ch	nannels	4 voltage 4 current	4 voltage 12 current	4 voltage 4 current				
Signal conditioning			Internal					
Current clamps / coils in	cluded	4x PNA-FLEX-300-45	-	-				
External quasi-static cha		PAD	-BOX	-				
nput specifications			'					
Voltage range		± 1400 V peak	± 1400 V peak	± 1400 V peak				
Bandwidth of input ampl	ifiers	DC to 300 kHz	DC to 300 kHz	DC to 300 kHz				
Direct current input		5A - 5A						
Maximum input current v			Depending on clamps					
Maximum input current v	via flexible coils		10000 A					
A/D conversion		1						
Sampling rate		DEWE-571-PNA: 250 kS/s aggregate DEWE-571-PNA-1MS: 1 MS/s/ch	250 kS/s aggregate	10 kS/s				
Resolution			16 bit					
Digital I/O								
Digital I/O, TTL level		2x DIN (24 V max.) and 1x DOUT (Relais, normal open, 60 V / 1 A AC max) 3						
Counters			-					
Functions								
Multiple 3 phase system	S			√				
Voltage, current		•	✓					
Power, frequency		· · ·	✓					
Harmonics, Interharmon	ics, THD	•	\checkmark					
Symmetrical component	S		✓					
Period values, disturban	ce rec.	v	√	✓				
ast transient recorder			1	✓				
Report generator & Flicker			1	\checkmark				
Network Monitoring		·	1	✓				
EN50160		With PMT reporting tool (DE	WESOFT-OPT-DB included)	With PMT reporting tool				
Wide band power analys	sis		✓	-				
EMC		1	1					
	Surge		IEC 61000-4-5: 4 kV					
ower supply	Burst		IEC 61000-4-4: 4 kV					
/- 14	Surge		IEC 61000-4-5: 4 kV					
Voltage inputs	Burst		IEC 61000-4-4: 4 kV					
Direct current inputs	Surge		IEC 61000-4-5: 4 kV					
Direct current inputs	Burst		IEC 61000-4-4: 4 kV					
Shock and vibration								
Shock								
/ibration			EN 60068-2-27					
			EN 60068-2-27 EN 60068-2-6, EN 60721-3-2 class 2M2					
Environmental			EN 60068-2-6, EN 60721-3-2 class 2M2					
Environmental Operating temperature		0 to +50 °C (0 to +45 with batteries)	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries)	-20 to +50 °C				
Environmental Operating temperature Storage temperature		0 to +50 °C (0 to +45 with batteries)	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C					
Environmental Operating temperature Storage temperature Humidity		0 to +50 °C (0 to +45 with batteries)	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries)					
Environmental Operating temperature Storage temperature Humidity Data storage ¹⁾		0 to +50 °C (0 to +45 with batteries) 10	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi	ity				
Environmental Operating temperature Storage temperature Humidity Data storage *) Technology		0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk	ty SD Card				
Environmental Operating temperature Storage temperature Humidity Data storage % Technology Capacity		0 to +50 °C (0 to +45 with batteries) 10	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi	ity				
Environmental Operating temperature Storage temperature Humidity Data storage *) Fechnology Capacity Main system *)		0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB	ty SD Card				
Environmental Operating temperature Storage temperature Humidity Data storage " Technology Capacity Main system " Display		0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk	ty SD Card 2 GB -				
Environmental Deperating temperature Storage temperature Humidity Data storage " Fechnology Capacity Main system " Display Processor	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800)	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800)	ty SD Card 2 GB				
Environmental Deperating temperature Storage temperature Humidity Data storage " Fechnology Capacity Main system " Display Processor Current transducer powe	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800) Intel [®] Core™2 Duo 2 GHz	ty SD Card 2 GB - Low power CPU -				
Environmental Deperating temperature Storage temperature Humidity Data storage " Fechnology Capacity Main system " Display Processor Current transducer powe nterfaces	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz -	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12° TFT (1280 x 800) Intel® Core™2 Duo 2 GHz -	ty SD Card 2 GB - Low power CPU				
Environmental Operating temperature Storage temperature Humidity Data storage " Technology Capacity Main system " Display Processor Current transducer powe Interfaces Power supply	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz -	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12° TFT (1280 x 800) Intel® Core™2 Duo 2 GHz -	ty SD Card 2 GB - Low power CPU -				
Environmental Deperating temperature Storage temperature Humidity Data storage * Capacity Main system * Display Processor Current transducer power nterfaces Power supply Standard	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²⁾ , incl. 2 batteries for ~2 hrs. operation,	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²⁾ , incl. 2 batteries for ~2 hrs. operation,	ty SD Card 2 GB - Low power CPU - 1x USB, 1x Ethernet, 1x RS-23				
Environmental Operating temperature Storage temperature Humidity Data storage " Capacity Main system " Display Processor Current transducer powe nterfaces Power supply Standard	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel [®] Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²⁾ , incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²), incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply	ty SD Card 2 GB - Low power CPU - 1x USB, 1x Ethernet, 1x RS-23				
Environmental Operating temperature Storage temperature Humidity Data storage " Capacity Main system " Display Processor Current transducer powe Interfaces Power supply Standard Optional Dimensions	er supply 9V	0 to +50 °C (0 to +45 with batteries) 10 Solid State Disk 32 GB 12" TFT (1280 x 800) Intel [®] Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²⁾ , incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²), incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply	ty SD Card 2 GB - Low power CPU - 1x USB, 1x Ethernet, 1x RS-23				
Environmental Operating temperature Storage temperature Humidity Data storage " Technology Capacity Main system " Display Processor Current transducer powe Interfaces Power supply Standard Optional Dimensions Housing Dimensions (W x D x H)		0 to +50 °C (0 to +45 with batteries) Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²⁾ , incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply -	EN 60068-2-6, EN 60721-3-2 class 2M2 0 to +50 °C (0 to +45 with batteries) -20 to +70 °C 0 to 80 % non cond., 5 to 95 % rel. humidi Solid State Disk 32 GB 12" TFT (1280 x 800) Intel® Core™2 Duo 2 GHz - 2x USB, 1x Ethernet, 1x RS-232 Battery powered, 2 battery slots ²), incl. 2 batteries for ~2 hrs. operation, incl. external AC power supply -	ty SD Card 2 GB - Low power CPU - 1x USB, 1x Ethernet, 1x RS-23 85 to 265 V _{AC} 50 / 60Hz internal 10 - 36 V _{DC} -				

	80.0	
DEWE-3020-PNA	DEWE-2600-PNA	DEWE-5000-PNA
8 slots for DAQP modules and 8 direct inputs on Sub-d-44	16 slots for DAQP modules	16 slots for DAQP modules
	Modular, 4x DAQP-HV and 4x DAQP-LV-B included	
	3x CLAMP-20-B	
	EPAD interface, up to 16 EPAD2 modules = 128 ch	
	± 1400 V peak	
	DC to 300 kHz	
	-	
	Depending on clamps	
	3000 A (10000 A)	
	250 kS/s	
	16 bit	
	8 2	
	2	
	✓	
	\checkmark	
	✓	
	✓	
	✓	
	√	
	√	
	✓	
	✓	N
	With PMT reporting tool (DEWESOFT-OPT-DB included	1)
	With DEWE-ORION series boards	
IEC 61000-4-5: 2 kV	IEC 61000-4-5: 4 kV	IEC 61000-4-5: 2 kV
IEC 61000-4-4: 2 kV	IEC 61000-4-4: 4 kV	IEC 61000-4-4: 2 kV
	IEC 61000-4-5: 4 kV	·
	IEC 61000-4-4: 4 kV	
	n.a.	
	n.a.	
EN 60068-2-27	EN 60068-2-27	MIL-STD 810F 516.5, procedure I
EN 60068-2-6, EN 60721-3-2 class 2M2	EN 60068-2-6, EN 60721-3-2 class 2M2	MIL-STD 810F 514.5, procedure I
0 to +50 °C	0 to +50 °C (0 to +45 with batteries)	0 to +50 °C
	-20 to +70 °C 10 to 80 % non cond., 5 to 95 % rel. humidity	
	Hard disk	
1000 GB	600 GB	1000 GB
15" TFT (1024 x 768)	15" TFT (1024 x 768)	17" TFT (1280 x 1024)
	Intel® Core™2 Duo 2 GHz 4x Binder 712 socket	
	4x USB, 2x Ethernet, 1x RS-232	
95 to 260 V _{AC} 50 / 60Hz	Battery powered, 3 battery slots ²⁾ , 2 batteries for ~2 hrs. operation incl., incl. external AC power supply	95 to 260 V _{AC} 50 / 60Hz 110 / 220 V _{DC}
-	95 to 260 V _{AC} 50 / 60Hz or 110 / 220 V _{DC}	-
Portable instrument	Portable instrument	Portable instrument
377 x 168 x 284 mm (14.8 x 6.6 x 11.2 in.)	417 x 246 x 303 mm (16.4 x 9.6 x 11.9 in.)	460 x 351 x 192 mm (18.1 x 13.8 x 7.7 in.)
Typ. 8 kg (17.6 lb.)	Typ. 14 kg (31 lb.)	Typ. 17 kg (37.4 lb.)
	JF	······································

(All Models except DEWE-638-PNA)


The option POWER for the DEWESoft (DEWESoft-OPT-POWER) is an absolutely high-performance tool for the calculation of power and other similar parameters – the capacity to multiply current and voltage is not the only feature it has. This toolbox is an excellent combination of many features and nearly all applications can be realised by using DEWETRON equipment.

Beside the exact calibration the frequency calculation is a central feature of this software. 50 Hz and 60 Hz are a must – for us also 16 2/3, 400 and 800 Hz as well as DC software and variable frequencies (driver) are a necessity. Due to the high acquisition rate (mainly dependent on the AD card in use, up to 1 MS/s) and the DAQP-HV module there is no limitation of the acquisition of PWM drivers (300 kHz electrical band width) and the calculation of active and reactive power, power factor etc ... The toolbox with the power quality parameters such as harmonics, interharmonics, THD, symmetric components, flicker and its combination with the numerous trigger possibilities make the equipment a power analyzer with nearly no limitations. Several screen elements such as vector scopes, harmonics monitor, oscilloscope and diagrams allow a perfect online visualisation of the data.

The integration of counter inputs, video and CAN-Bus offers additional data sources. The mathematical library additionally offers the possibility to calculate parameters such as torque and angular velocity or even determine the efficiencies online.

Wiring Schematics

Various wiring schematics allow the following connections of instruments: single-phase connection, star-connection, delta-connection, V-connection, Aron-connection, two-phase-connection and a combined star-/delta-connection – of course all with or without electric current.

Harmonics Analysis

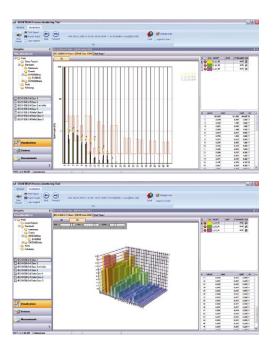
Measure

FFT – Harmonics Analysis

- U, I, P and Q
- Individual setup of the number of harmonics including DC-component (Example: 20 kHz sampling rate = 200 harmonics @ 50 Hz)
- Interharmonics, groups or single values
- According to IEC 61000-4-7
- Calculation corrected to the actual real frequency
- THD, THD even, THD odd, K-Factor, TIHD
- Trigger on each parameter
- Background harmonics
- Grouping methods for harmonics and interharmonics free configurable: for examle the number of pins and the frequency groups "200 Hz" according to IEC 61000-4-7

Full FFT

- In addition to the harmonics FFT a full frequency based FFT is available.
- All frequencies can be analyzed with this function
- Trigger on FFT patterns
- Selectable Filters (Hanning, Haming, Flat Top, Rectangle, ...)



Analyze

FFT – Spectra

- Individual number of harmonics (25, 50, ...)
- Voltage, current, active power, reactive power, phase angle, impedance
- Limits according standards (EN50160, IEC61000-2-4, individual definition)
- Max / Avg / 95% calculation and comparison against limits
- Timestamp or intervals of data presentation
- More subgraphs per page possible
- More datalines in one graph
- Direct comparison of different locations
- Zoom In / Zoom Out Function
- Report Printing function
- 3D graph

Power Analysis

Measure

Power Calculation

- P, Q, S, D
- Cos Phi, power factor
- P, Q, cos Phi for each harmonic
- Symmetrical components (positive, negative and zero sequence components); U, I, P, Q, cosPhi; from 10 period values and period values
- Period values (1/2 cycle, cycle, overlapping, 1 ms sliding, ...)

Recorder

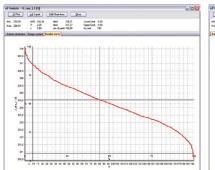
- Recording of all parameters in individual intervals
- Individual screens can be defined
- Zoom in and out
- Storing fast (full sampling rate) or reduced (e.g. 600 sec.)
- Detailed zoom-in to pulse width!

X/Y Recorder

- Orbitals can be generated online
- Nover M as example for this function

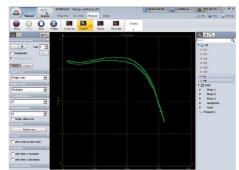
Analyze

Diagrams


- Single diagrams or multiple diagrams on one page
- Individual number of channels per diagram
- Graphical view or statistical view in a table
- Table individual configurable
- Min / Max / Avg calculation
- Up to 5 percentage calculations (eg 95% value) per channel
- Direct comparison of different locations
- Direct comparison of different days
- Zoom in / zoom out function
- Report printing function
- Math channels

Histograms

- Histogram calculation
- Med / Stddev / Var / Mod calculation
- Individual definition of sidebands
- Report printing function
- Energy line


Energy consumption diagram

Energy duration line

A) mente	DEWESHIR Setuplies	a stap Phenze	Design	1	Dué Sét. IE.4 de	😭 * = 603 sei	2 50 0 Hep 5000
Capy Facto Davido Lux	n. 🚥 e		• 🗮)	+ Ŧ Þ~	k .	. 🙊	Martine Martin
	72.14	485.94	49225	or er D. 15	25722	255.94	
inansparent informations	99725	12:40 12:40	9.0H (VAI) 47 407.05	4 1352	1948 1948	155.52	- 912 - 11 - 925
Anul E	155.73	D. 12	9.0000101 *** 140.99	112 113	9498	9497	=12 =011 =13 7.52 500
Cland 2	ISBSS	195 <i>3</i>	913111 (VAI) *1 13025	13 LT II EI	001.011.01.04 ×0 0.15	25.05	P Drace 1 P Proce 2 V Proce 3
Pest (0-1-s)	155D3	15720	0.15	14039	* 1950.000	9044	♥ Power + ₱,10 + 0,13
Lipper limit	9035	138.10	28.89	13804	14059	12001	+ 5,13 + 14,13 + 0,13 + 04,13
F tre F deg	D 19	2590	6.130AA AT 155.33	15833	17.13 × 2.15	14028	+ QUD + 400 + 400 + 400 + 400
C Ada (P Hanus	120 120	9 159	9 15 1	ондариод на 19883	81.35	138,77	+ 1,12,14 + ph(1,12,15 + cos,14,12,16 + ph(1,2,16
Leading Trailing p , 2 Exponent P Auto C Harusi	515.00 MIN 49	- 1 1994	تع <u>مردر سر</u> ین 1.19	بع <u>معرون</u> 11792	озенај 🗢 120	24(13(01))eg) = 79,32	P Tutal

- U SS Hat

M

Fault Analysis

Measure

Fault recorder

- Trigger on all parameters of the power module!
- U, I, P, Q, S, D, cos Phi, power factor, ...
- Each harmonic!
- Pos-, neg-, zero-sequence systems
- Very fast glitch detection (MS/s)

Edge-, filtered edge- and window-trigger

Trigger on rising edge when the threshold has been crossed

Trigger on falling edge when the threshold has been crossed

Trigger when signal enters the range between two definable threshold levels

Trigger when signal leaves the range between two definable threshold levels

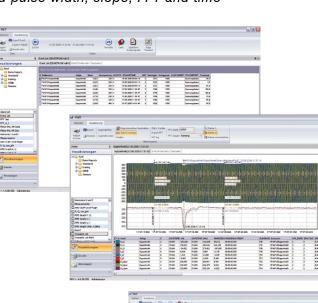
Further trigger functions: pulse width, window and pulse width, slope, FFT and time

Analyze

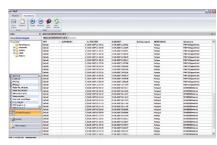
Fault Lists

- Listings of faults
- Filters like time, channel, type etc..
- Automatic update function
- Confirmation support
- Report printing function

Fault Diagrams


- Waveform presentation of faults
- RMS shape calculation
- Different setups for different faults
- Math channels & Report printing function
- FFT

DIS DIP Statistics


- Statistics like DISDIP / Unipede etc..
- Individual limits
- Individual time settings
- Graphical or table element
- Report printing function

Alarm Lists

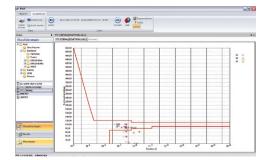
- Alarm list definition
- Automatic update function
- Confirmation support
- Report printing function

Analysis according to Standards

Measure

- Setups according to certain standards
- prepared or user-definable
- PQ according to EN501610
- Harmonics according to IEC 61000-4-7
- Flicker according to IEC 61000-4-15
- Measurement according to IEC 61000-4-30 class A

Flicker


- According to IEC 61000-4-15
- P_{st} and P_{Lt} with flexible intervals
- Individual recalculation intervals
- P_{F5}, du, du_{max}
- Flicker emission (current flicker)

Analyze

- **EN-50160**
- IEC 61000-2-4 class 1, 2, 3
- IEC 61400-21
- Harmonics freely adjustable (for example: IEC 61000-3-x)
- Built in report generator for flexible reports
- Combination of certain diagrams in one report
- Tables
- FFT spectra
- Fault statistics
- CBEMA curve
- All other visualization-elements are supported
- Summary report for more instruments
- Automated report generation and print support

CBEMA/ITIC curve

- Statistics like CBEMA, SEMI F47 etc..
- Individual limits
- Individual time settings
- Combination with DISDIP possible
- Graphical view
- Report printing function

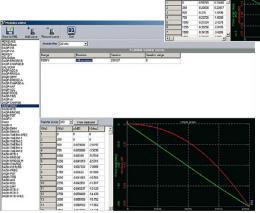
Further Analysis

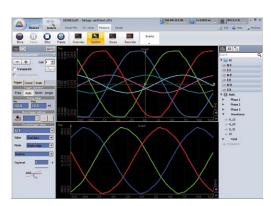
Scope

- Selectable graphs
- U1, U2, U3, U12, U23, U31: Line to line and line to earth voltages are supported
- Up to 8 graphs in one diagram
- Zoom in and out are supported online
- Waveforms can be stored

Vector Scope

- Vector scope for 3 phase systems
- Each individual harmonic can be shown
- More vector scopes can be displayed on one screen
- Different power systems can be shown on one screen
- With the "transparent" function direct comparisons of phasors are possible


Frequency Calculation


The software PLL guarantees a very accurate frequency calculation (mHz). On one system multiple power systems can be measured and each can have its own frequency. With the use of the different instruments from DEWESoft the values can be shown in several ways.

Calibration/Accuracy

The high accuracy of the calculation can be reached because of the calibration function in the frequency domain. With this unique technology amplitude and phase can be corrected for the full frequency range from DC up to whatever the hardware can sample (kilosamples up to megasamples per second). All internal curves like filter response or multiplexer shift are corrected inside the software and the sensor database includes correction curves for each clamp, Rogowski coil, transformer or which sensor ever is used.

L

😪 🔐 🦛

+

Upper limit ("Use Lower limit ("Use

<u> Power Network Analysis</u>

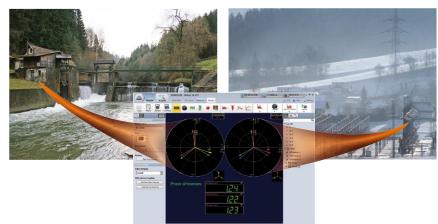
Other Functions

Video

The parallel usage of the synchronous DEWESoft VIDEO function allows the user to store videos in parallel with the data recording and opens a wide range of applications – whenever optical information is needed!

Math Functions

With the additional MATH function of DEWESoft calculations of for example efficiency, difference of input, output and phase angle differences can be implemented easily. Use all POWER parameters as input value!

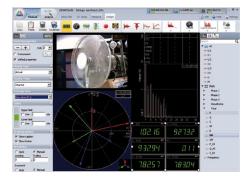

- Arithmetic functions
- Trigonometric functions
- Logic function
- Signal generator
- Event functions
- d/dt, integration
- Highpass-, lowpass- and bandpass-filters
- Transfer curve function

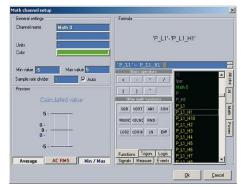
Remote Control

With the remote control ability the instrument can be configured and the data can be evaluated from your office or wherever you are.

GPS and NET

With the use of the GPS function a comparison of different units on different locations is possible. Phasor measurement and angle comparisons are a typical application of this function.




Reporting Function

- Direct report printout
- Data export for enhanced post analysis in other applications
- PMT as reporting and analysis tool

Notification (for permanent installed systems)

- 📒 E-Mail
- SNMP

Clamps & Ampflex

PNA-CLAMP-5						
······	AC input range	0.04 to 6 A				
	Output	60 mV/A				
	% accuracy	0.04 to 6 A	≤ 0.5 %	Phase shift	0.04 to 6 A	≤ 0.5°
	Bandwidth	40 Hz 10 kHz				
	Working temperature	-10° to +55°C	-	Temperature drift	≤ 0.2 % of output	signal per 10K
	Connector type	C16-1, 6+PE		Temperature unit		
		DEWE-5xx-PN/	`			
	Fits to following systems	DEWE-3XX-PIN	`			
PNA-CLAMP-10						
	AC input range	0.01 to 12 A				
	Output	100 mV/A				
	% accuracy	0.01 to 0.1 A	≤ 3 % +0.1 mV	Phase shift	0.01 to 0.1 A	not specified
		0.1 to 1 A	≤ 2.5 %		0.1 to 1 A	≤ 5°
		1 to 5 A	≤1%		1 to 5 A	≤ 3°
		5 to 12 A	≤1%		5 to 12 A	≤ 3°
	Bandwidth	40 Hz 10 kHz	2			
	Working temperature	-10° to +55°C		Temperature drift	\leq 0.2 % of output	signal per 10K
	Connector type	C16-1, 6+PE				
	Fits to following systems	DEWE-5xx-PN	A			
PNA-CLAMP-20 / PNA-CLAMP-2	0-В					
	AC input range	0.1 to 24 A		selectable	0.5 to 240 A	
	Output	100 mV/A			10 mV/A	
	% accuracy	0.1 to 20 A	≤ 1 % +50 mV		0.5 to 10 A	≤ 3 % +5 mV
	, a dood dog	0.1.10 2071			10 to 40 A	≤ 2.5 % +5mV
					40 to 100 A	≤ 2 % +5mV
					100 to 240 A	≤ 1 % +5mV
	Bandwidth	40 Hz 10 kHz	7		100 10 2 10 / 1	= 1 /0 .0111
	Phase shift	0.1 to 20 A	not specified		0.5 to 10 A	not specified
==		0.1 10 20 A	not specified		10 to 40 A	≤ 5°
					40 to 100 A	≤ 3°
					100 to 240 A	≤ 2.5°
	Working temperature	-10° to +55°C		Temperature drift	≤ 0.15 % of outp	
	Connector type		r PNA-CLAMP-20	•	•	• •
	Fits to following systems			A-1MS for PNA-CLAMP-20	(- mm) IOI CLAW	-20-0
	i its to following systems			A-TMS for PNA-CLAMP-20 lifiers for PNA-CLAMP-20-B		
		All Systems Will		INCISION FINA-GLAIVIP-20-D		
PNA-CLAMP-1000						
		0.004 1 4000 4				
	AC input range	0.001 to 1200 A				
	AC input range Output	1 mA/A				
			≤ 3 % +5 μA	Phase shift	1 to 100 mA	not specified
	Output	1 mA/A		Phase shift	1 to 100 mA 0.1 to 1 A	not specified not specified
	Output	1 mA/A 1 to 100 mA	≤ 3 % +5 µA	Phase shift		•
	Output	1 mA/A 1 to 100 mA 0.1 to 1 A	≤ 3 % +5 μA ≤ 2 % +3 μA	Phase shift	0.1 to 1 A	not specified
	Output	1 mA/A 1 to 100 mA 0.1 to 1 A 1 to 10 A	≤ 3 % +5 μA ≤ 2 % +3 μA ≤ 1 % ≤ 0.5 %	Phase shift	0.1 to 1 A 1 to 10 A	not specified ≤ 2°
	Output	1 mA/A 1 to 100 mA 0.1 to 1 A 1 to 10 A 10 to 100 A	≤ 3 % +5 μA ≤ 2 % +3 μA ≤ 1 % ≤ 0.5 %	Phase shift	0.1 to 1 A 1 to 10 A 10 to 100 A	not specified ≤ 2° ≤ 1°
	Output % accuracy	1 mA/A 1 to 100 mA 0.1 to 1 A 1 to 10 A 10 to 100 A 100 to 1200 A	≤ 3 % +5 μA ≤ 2 % +3 μA ≤ 1 % ≤ 0.5 %	Phase shift	0.1 to 1 A 1 to 10 A 10 to 100 A	not specified ≤ 2° ≤ 1° ≤ 0.7°
	Output % accuracy Bandwidth	1 mA/A 1 to 100 mA 0.1 to 1 A 1 to 10 A 10 to 100 A 100 to 1200 A 30 Hz 5 kHz	≤ 3 % +5 μA ≤ 2 % +3 μA ≤ 1 % ≤ 0.5 %		0.1 to 1 A 1 to 10 A 10 to 100 A 100 to 1200 A	not specified ≤ 2° ≤ 1° ≤ 0.7°

Shunts

Shunts		DAQ-SHUNT-3	DAQ-SHUNT-4	DAQ-SHUNT-5
	Application	Power grid analysis	Power grid analysis	Power grid analysis
	Type of current	AC + DC	AC + DC	AC + DC
	Impedance	0.1 Ohm	0.1 Ohm	0.1 Ohm
	Accuracy	0.1 %	0.1 %	0.1 %
00	Temperature drift	<±10ppm/K (20 °C to 60 °C)	<±10ppm/K (20 °C to 60 °C)	<±10ppm/K (20 °C to 60 °C)
	Connectors	Input: 2 m cable with banana plugs Output: 30 cm cable with banana plugs	Input: built-in banana jacks Output: 30 cm cable with banana plugs	Input: built-in banana jacks Output: built-in banana jacks

	AC input range	0.5 to 200 A		- ala atabla	0.5 to 2000 A	
	Output	10 mV/A		selectable	1 mV/A	
	% accuracy	0.5 to 5 A	not specified		0.5 to 5 A	not specifie
		5 to 200 A	≤1%		5 to 2000 A	≤1%
	Bandwidth	10 Hz 20 kH	z			
	Phase shift	0.5 to 5 A	≤ 0.7°		0.5 to 5 A	≤ 0.7°
	•	5 to 200 A	≤ 0.7°		5 to 2000 A	≤ 0.7°
	Working temperature	-10° to +55°C	maximum temperat	ture for sensor is 90°C)		
	Temperature drift	≤ 0.5 % of outp	out signal per 10K			
	Connector type	Safty banana j	acks (4 mm)	Length of coil	45 cm for PNA-A	100-200-45
	Fits to following systems	All systems wit	h DAQ series ampli	ifiers	80 cm for PNA-A	100-200-80
IA-A100-300-45 / PNA-A10	0-300-80					
	AC input range	0.5 to 200 A			0.5 to 2000 A	
	Output	10 mV/A		selectable	1 mV/A	
	% accuracy	0.5 to 5 A	not specified		0.5 to 5 A	not specifie
		5 to 200 A	≤1%		5 to 2000 A	≤1%
	Bandwidth	10 Hz 20 kH	z			
10	Phase shift	0.5 to 5 A	≤ 0.7°		0.5 to 5 A	≤ 0.7°
		5 to 200 A	≤ 0.7°		5 to 2000 A	≤ 0.7°
	Working temperature	-10° to +55°C (maximum temperat	ture for sensor is 90°C)		

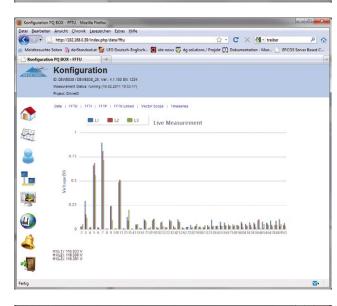
working temperature	-10 to +55 C (maximum temperature for s		
Temperature drift	≤ 0.5 % of output signal per 10K		
Connector type	Safty banana jacks (4mm)	Length of coil	45 cm for PNA-A100-300-45
Fits to following systems	All systems with DAQ series amplifiers		80 cm for PNA-A100-300-80

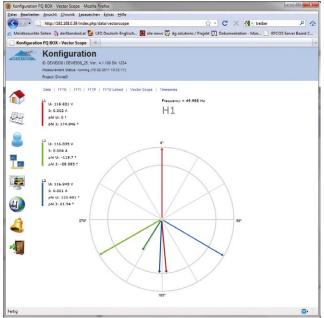
PNA-A100-1000-120

NA-A100-1000-120						
	AC input range	0.5 to 1000 A	selecta	blo	0.5 to 10000 A	
	Output	10 mV/A	Selecia	bie	1 mV/A	
	% accuracy	0.5 to 5 A	not specified		0.5 to 5 A	not specified
		5 to 1000 A	≤1 %		5 to10000 A	≤1%
	Bandwidth	10 Hz [45	65] 20 kHz			
	Phase shift	0.5 to 5 A	≤ 0,5°		0.5 to 5 A	≤ 0,5°
		5 to 1000 A	≤ 0,5°		5 to10000 A	≤ 0,5°
	Working temperature	-10° to +55°C (maximum temperature for	sensor is 90°C)		
	Temperature drift	≤ 0.5 % of outp	ut signal per 10K			
	Connector type	Safty banana ja	acks (4 mm)	Length of coil	120 cm	
	Fits to following systems	All systems with	h DAQ series amplifiers			

PNA-FLEX-MINI-300-70

AC input range Output	0.5 to 300 A 10 mV/A	selectable		0.5 to 3000 A 1 mV/A	
% accuracy	0.5 to 5 A	not specified		0.5 to 5 A	not specified
,	5 to 300 A	≤ 1 %		5 to 3000 A	≤1%
Bandwidth	10 Hz 20 kH:	Z			
Phase shift	0.5 to 5 A	≤ 0.7°		0.5 to 5 A	≤ 0.7°
	5 to 300 A	≤ 0.7°		5 to 3000 A	≤ 0.7°
Working temperature	-10° to +55°C (maximum temperature for sen	sor is 90°C)		
Temperature drift	≤ 0.5 % of outp	ut signal per 10K			
Connector type	C16-1, 6+PE		Length of coil	69 cm	
Fits to following systems	DEWE-5xx-PN	Ą			
	DEWE-5xx-PN	A-1MS			


PNA-FLEX-300-45 / PNA-FLEX-300-45


NA-FLEX-300-45 / PNA-FLEX-300)-45					
	AC input range	0.5 to 300 A	select	tablo	0.5 to 3000 A	
	Output	10 mV/A	301001	lable	1 mV/A	
	% accuracy	0.5 to 5 A	not specified		0.5 to 5 A	not specified
		5 to 300 A	≤ 1 %		5 to 3000 A	≤1%
	Bandwidth	10 Hz 20 kHz	z			
	Phase shift	0.5 to 5 A	≤ 0.7°		0.5 to 5 A	≤ 0.7°
		5 to 300 A	≤ 0.7°		5 to 3000 A	≤ 0.7°
	Working temperature	-10° to +55°C (maximum temperature fo	or sensor is 90°C)		
	Temperature drift	≤ 0.5 % of outp	ut signal per 10K			
	Connector type	C16-1, 6+PE		Length of coil	45 cm for PNA-FI	_EX-300-45
	Fits to following systems	DEWE-5xx-PN	Α		80 cm for PNA-FI	_EX-300-80
		DEWE-5xx-PN	A-1MS			

Software DEWE-638-PNA / DEWE-838-PNA

The software is a web application which you can access with any browser (e.g. Microsoft Internet Explorer, Apple Safari, Mozilla Firefox,...)

Section of the local division of the local d		Lesezeichen Egtras Hilfe				0.0
	http://192.168.0.39/			<u>☆・</u> C >	- Longer and the second s	P 6
			ch 💽 site news 🦉 dg sole	utions / Projekt 🛄 Dokumen	tation - Man 📋 EPCOS	Server Based C
Konfiguratio	on PQ BOX - Data	*				
2437 46797		ation 18_25: Ver.: 4.1.100 SN: 1234 unning (16.02.2011 10:55:17)				
	Data FFTU FFT PNA BOX Onlin	1 FFTP FFTU Linked '	Vector Scope Timeseries			
Contract of Contract	Frequency	49.99 Hz		P	0.55 W	
	٩	5.82 VAr		\$	5.84 VA	
-		Phase 1	Phase 2	Phase 3	Un / In	
	U L-E	116.16 V	116.44 V	116.47 V	0.01 V	
-	UL-L	201.14 V	201.54 V	201.92 V		
_	1	0.00 A	0.00 A	0.00 A	0.01 A	
	p	0.20 W	0.19 W	0.16 W		
	٥	1.99 VAr	1.76 VA/	2.07 VAr		
	QH	0.00 VAr	0.00 VAr	0.00 VAr		
	s	2.00 VA	1.77 VA	2.08 VA		
0	PF	0.10	0.11	0.08		
-	PH1	0.19 W	0.18 W	0.15 W		
	Q H1	0.00 VAr	0 00 VAr	0.00 VAr		
	phi UI	38.24 *	-98.36 *	146.09 *		
4	phi UU	0.00 *	-119.71 *	120.45 *		
	THD	1.10 %	1.07 %	0.94 %		
	THD Even	0.08 %	0.08 %	0.00 %		
	THD Odd	1.10 %	1.07 %	0.93 %		
	PST	0.00	0.00	0.00		

Online data

- U, I of phases, lines and neutral
- **f**
- Power of phases and total
- 📕 P, Q, S, PF
- Fundamental values of power

Harmonics screen (IEC 61000-4-7)

Flicker (IEC 610004-15)

U, I, P, Q, Uline

E THD

Vector scope

- 🗖 U,I
- Selectable order of harmonic

Access to the instrument

Different users have different access to the instrument.

Basic access:

- Viewer (only data can be shown)
- Admin (administrator access to the instrument)

PQ and POWER monitor

Configure the storing options for the PQ recorder: Harmonics, flicker, voltage, THD,...

Configure the POWER meter: P, Q, S, PF, cos Phi, I, f,...

0.0		iguration									
Uer		/ DEWE838_25, Ver.: 4.1.100 SN	: 1234								
		t Status: running (16.02.2011 10:									
Proj	ject DAn	юO									
Ala	ms										
S	lave										
51	orage ti										
Po	attime ex	tension: 😥									
No	ominal Vo	tage: 230 V	Holdoff time[ms]:	12							
[-]	Voltag	e - Alarm									
	taiv	Description	Abs / Rel		Start		Stop	Trigger Stor	age	Pretime	Posttime
	0	Spannungsband Stern	Relative •	max	5	max		No values	•	12	5
				min	2	min.	4444				
		Spannungssprung Stern	Absolut •	8				period values	•	2	2
19	0	Spannungsband Dreieck	Relative -	max:	30	max:	40	both	•	0	900
				min:	10	min:	20				
0		Spannungssprung Dreieck	Absolut -	666				Raw data	•	2	3
12	0	Spannungsband Uen	rms -	max:	10	max	12	both	*	4	3
				mir:	9	min:	11				
U		Spannungssprung Uen rms		10				period values	•	1	2
E		Frequenzsprung		990				Raw data	•	5	4
1.1		nt - Alarm									
1.1		nt - Alarm r - Alarm									

Fault recorder

Trigger options for:

- External (DIOs)
- Voltage (level, rate of change, line + phase and neutral)
- Current (level, rate of change)
- Power (level, rate of change)
- Frequency (level, rate of change)

Power Quality Analysis -Power Quality Measurements

Application Example for Power Network Analysis

Introduction

Power quality, also known as keywords like grid quality, grid voltage quality and service reliability, is a topic that is directly linked to energy supply and is certainly a highly topical issue in this field.

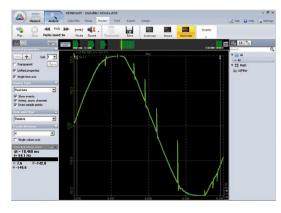
Due to the liberalization of power markets, grid-bound energy sources, such as electrical current, became freely tradable products and thus have to obey product liability law as do other tradable products. The corresponding parameters were constituted in the product standard EN 50160 in Europe.

- U_{rms}
- Wave form
- Frequency
- 3~ phases; symmetry
- Availability

Additionally, there are many other tasks: e.g. special harmonics evaluations, long-term measurements, and the identification of fastest transient processes or only power flow measurements in four quadrants.

Task

The identification of limit values that are constituted in the EN 50160 or in another power quality standard is nowadays not a big challenger anymore. Several millimeters can measure these, compare their values with limit values and reflect them in well-formatted reports.


The task becomes more specialized when you want to find the reasons for off-limit conditions; that is when you want to make exact analyses of the national grid.

For very fast transient processes as they can appear in low voltage grids, sampling rates of 6,4 kHz are not sufficient. 1 million data points per second are necessary in this case.

1 Msamples/sec

The analysis of harmonics up to the 25th is sufficient for the EN 50160 but other standards demand 50 or even 100. Latest standards even proceed to the range of 9 kHz in order to identify disturbances of electrical instruments (200 Hz bands of 2 to 9 kHz).

- Harmonics up to 50 / 100 or higher
- 🛢 2 to 9 kHz @ 200 Hz
- Flexible grouping method for interharmonics and harmonics
- Determination of power flow direction of the individual power harmonics

Mobility

<u> Power Network Analysis</u>

Flicker as the impact of voltage fluctuation is widely known. But what about the sources of flicker (identification of flicker emission)? What about adjustment of filters (faster re-calculation periods and sliding flicker windows)?

- Flicker 10 min Pst, Plt
- Identification of flicker emission (current flicker)
- Shorter re-calculation periods, sliding flicker windows

Beside the EN 50160, there exist many other standards and regulations in this field. Only some may be listed that imply exact measurement and can be analyzed with DEWETRON-instruments:

- **EN** 50160
- IEC 61000-3-x; IEC 61000-2-2; IEC 61000-2-4; ...
- IEC 62040
- ITI / CBEMA curve
- DISDIP statistics (Unipede)
- TOR D2 (D A CH CZ regulation)
- 🗕 etc.

For medium-voltage power grids analyses are not only necessary for line voltage/earth potential but also for line/ line voltage. Short circuits display differently compared to earth faults. Flicker and harmonics should be evaluated for the line/line voltage, the voltage transformers are mostly installed between line and earth. Flexible connection possibilities and internal conversions may remedy.

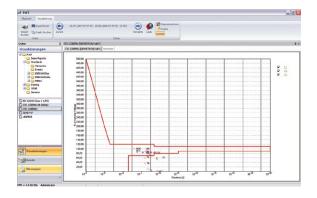
- 3 ~ star (e.g. low voltage)
- 3 ~ star with conversion to delta (e.g. mean and high voltage)
- Delta connection (e.g. industrial grids)
- Aron- und V-connection
- 2 ~ (e.g. traction supply systems)
- 1 ~ (e.g. household)

Conventional instruments for power quality analysis obviously prove to be at the end of their possibilities. With a concept for measurement instruments that is as flexible as possible and that complies with official standards we try to provide the perfect solution.

Solution

Hardware

The product DEWE-571-PNA was especially designed and developed for measurements in distributors and central control rooms. Completely isolated, highest EMC protection and a stable case characterize this instrument. If more channels are needed then the ELOG model can help. 4 voltages and 12 currents at the same time are its specific feature.


Besides, also other products in a conventional DEWETRON box and completely installed systems are available. The requirements of analysis instruments for power quality were constituted in the standard IEC 61000-4-30. Our instruments comply with this standard.

Software

The software of DEWESoft with its options POWER and DB (report generator PMT) was especially designed for exact normative analyses and, among other features, offers the following functions for analysis:

- Voltage curve, voltage jumps, voltage fluctuations
- Disturbance statistics (Unipede, CBEMA, ITI, SEMI F47, ...)
- Flicker (IEC 61000-4-15)
- Power quality analysis, load curve analysis
- Reports according to standards (e.g. EN 50160, IEC 61000,...)
- Flexibility of configuration of measurement
- Flexible screen settings
- Flexible reports (according to standards or user-defined)
- Integration in permanent monitoring systems possible (please, also see DEWE-PFR)

by the bors the bors

Customers

- Energy supply companies
- Grid operators
- Service technicians
- Energy consultants and engineering offices
- Facility management
- Constructors of electrical plants
- Research institutions in schools and universities

Energy Consumption Measurements -Load Curve Analyses

Application Example for Power Network Analysis

Introduction

Energy consumption, its chronological course, the proportion of active and reactive power and the subsequent costs are a big issue nowadays. Of great interest are on the one side, savings capacity both for the consumption and the electricity bill and on the other side, the greenhouse gas emissions in combination with the energy consumption. Furthermore, the load curve is interesting as regards the reduction of peak power and load management systems.

Task

Load curve analyses are typically carried out in the main distributors in business enterprises and industrial plants. Transformer stations and the circuits behind them can also be added as typical measurement locations. Of great interest are currents, voltages, active and reactive power – not only the instantaneous value but also as regards their chronological sequence with adjustable averaging interval. Such an analysis usually takes 1 week to 1 month.

In order to be able to configure load management systems efficiently, it is not only obligatory to know the total load curve but also the individual branches. Multi-phase measurements on several consumers, in parallel and if possible with only one instrument is therefore the challenge for measurement technology.

In transformer stations it is important to identify the distribution of energy on the different circuits in order to optimally adjust the operation and identify shortages.

Solution

Hardware

The product DEWE-571-PNA was especially designed and developed for measurements in distributors and central control rooms. Completely isolated, highest EMC protection and a stable case characterize this instrument.

If more channels are needed then the ELOG model can help. 4 voltages and 12 currents at the same time are its specific feature. Besides, also other products in a conventional DEWETRON box and completely installed systems are available.

Software

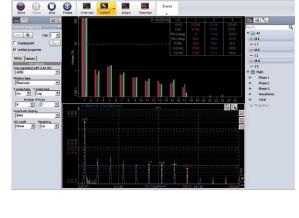
Our software DEWESoft with its POWER option is the perfect tool for these requirements. Power measurement calculations, several 3~ systems at the same time - even with different frequencies, multi-allocation of voltage, sensor scaling etc. are the necessary features.

PMT as a supplement for report generation is the icing on the cake. Load curves, energy growth curves, sorted out load curve analysis (load curve management), statistic functions and the report generator are the functions offered.

A special energy calculation tool (plug-in) moreover offers the possibility to distinguish between consumed and transmitted energy, inductive and capacitive reactive energy, entire energy, and self-configurable energy channels.

Further Functions

PQ Parameter


Beside the energy data, all power quality parameters such as harmonics, flicker, unbalances, frequencies and disturbances can be measured.

Mathematics Library

You can program arbitrary formula in an online system. The calculation of total power and identification of losses can thus also be done online.

Customers

- Service technician
- Facility management
- Constructors of electrical systems
- Constructors of load management systems
- Research institutions in schools and universities
- Energy consultants and engineering offices
- ISO 16001 certifier

(1)

		CHE 64 (2209)				1
Visualisations	RMS Graph U, 10	SEVE Graz 233V) Start Page				
Food	200 237 238 238 238 238 238 239 239 239 239	N/MA/M	Nymith	N.M.M.	MARMARY	MM
Differential de Elevential Elevential Elevential Elevential Elevential	20	W.	11			
Picker Pic Pi Sax PinguercyValueton Measuremente Pi0.ccc_ste PitS Graph F, 0 PitS Graph F, 1					0 00.02.200	
FinauercyVikulion FinauercyVikulion Filo, course Filo, c						
Finauercy/Valuetion Finauerc		TERMER OATENE OF MA	IN UNIT CURVAL	CORVED MODULECATION CORVE DIS 2014	INTERACTOR	Overland of more and
FinguercyViduation FinguercyVid		1768-ADD OVERTIME OF MA	ex unit cumal	CORVELS INCODUSCAPTION CERVE Site 2014 CERVE Site 2014	INTERNETCAPTON DOWE-CE-DISE DOWE-CE-DISE	0.4787946 (7 56439 5660 1 20431 20337
Finguercy/Valuation Mesourcement Fr.G.coc.gr/m Pr.G.coc.gr/m Pr.G.coc.gr/m Press Genen V. 1 Press Gene V. 1 Press Genen V. 1 Press Gene V. 1 Press Gene V. 1	- (44 5 	TERMER OATENE OF MA	er unit tumal	CORVERS INCOLUECATION CERVE DW DAY CERVE DW DAY CERVE DW 20Y	Institutento.Africe Down-carlow DOME-125-Des DOME-125-Des	DATETING (F MADE MED 8 20431 220.17 220.17
FinguercyViduation FinguercyVid		1768-ADD OVERTIME OF MA	ex unit cumal	CORVELS INCODUSCAPTION CERVE Site 2014 CERVE Site 2014	INTERNETCAPTON DOWE-CE-DISE DOWE-CE-DISE	0.4787346 (2 5440) 5480 (2014) 2014 (2015) 2015 (2014) 2015 (2014)
Preserve/Haddon Pre.0.co.jh Prest Grant U.I Prest	- (U4 5 	11(8x00) (3x72766 07 144 2 2 7 8	DI UNIT EURIAL	COMULE INDODUCATION COME ONE 20Y COME ONE 20Y COME ONE 20Y COME ONE 20Y	INTERANCE AFTER CONTRACTORY CONTRACTORY CONTRACTORY CONTRACTORY CONTRACTORY	0.4787946 (7 54409 5460 1 204,01 203,07 205,92 7,26

DEWESoft - Ser	tup: powerdemo.dss				and the second	
Ele Edit Data	Djopkayo System Help			the second s	14:38:32	No A/D hardware
Measure Anal		ope Recorder Store	Stop Setup ver	sion: 6.2 b69		
DATA FILE OPTIONS						
File details Dat	a _2008_11_11_6000	🖻 Create a multille	Setup	Save multifie opt. in setup		
File directory C Program Files/Deur DYNAMIC ACOULSIT	ation DEWESonth Data	Make new file after storing options	1 triggers			
10000 *	Auto	always fast				
EHT/OUE 4	Adjusted to 0,1 sec	Start storing automate				
	Power Analog out Plugins	La contra c				
100000	Constanting and an operation of the second second					
dg.Engergy Cal	Delete all Channels Advances		iggered counting enabled if trigger channel			v1.1.7.30
Reset Al	Delete al Channels Reset at a Ask Never	Court	il trigger channel			
Reset All	Delete al Channels Reset at a • Adways Ask Never Channel name Unit	Count				
Reset Al	Delete al Channels Reset at a Adways Ask Never Channel name Unit Power 1/Q VArh AL VArh	Integral filter	il trigger channel	0		
Reset All	Reset at a Askage Qelete al Channels - Askage Ask Never Channel name Unit Power 1/0 Vikh AL Vikh Power 1/0 Vikh AL Vikh	Integral filter ALL POS	il trigger channel	0		
Reset Al	Channel arms Unit Power 1/Q Vidih PO Vidih Power 1/Q Vidih PO Vidih	Integral filter ALL POS NEG	il trigger channel	0		
Reset Al	Reset at a Quiete all Channels Admign • Admign Deamel name Unit Power 1/Q Vidh AL, Vidh Power 1/Q Vidh NE, Vidh	Integral filter ALL POS NEG ALL	il trigger channel	0		
Reset Al	Relete all Channels Relet al a Channels Ack All	Integral Ren ALL POS NEG ALL POS	il trigger channel	0 0 0 0		
Reset All Active Color V V V V	Rest at A Desire at Channels Rest at A Always Alwa Always Al	Integral filter ALL POS NEG ALL POS NEG NEG	il trigger channel	0		
Reset All Active Color	Relate al Charroll Relate al Charroll Operating and the second sec	Integral filter ALL POS NEG ALL POS NEG ALL	il trigger channel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Reset All Active Color V V V V	Rest at A Desire at Channels Rest at A Always Alwa Always Al	Integral filter ALL POS NEG ALL POS NEG NEG	il trigger channel	0		

Measuring Wind Power and other Renewable Energy Sources

Application Example for Power Network Analysis

Introduction

Renewable Energy sources are already integrated in power grids and the amount of energy is becoming more and more. Wind power plants are mostly operated in wind power plants or as single plants. Photovoltaic systems with a total power of some Megawatts are already a part of the townscape in some countries and bio gas plants are no longer the hobby of some farmers anymore. Each of these plants acts as an independent power plant and must have special features concerning stabilised voltage and electromatgnetic influences respectively.

On one hand side these electrical characteristics have to be verified and carried out as individual tests or sample testing (IEC 61400-21)

On the other hand side the behaviour of large renewable plants an the grid has to be monitored according to the actual power quality standards (for example EN50160) as there is a provider/ customer relationship on the connection point to the power grid.

Task

Power plants with renewable sources are thus independent power plants within the grid which they can positively or negatively influence as much as any other supplier or consumer. These influencing parameters (voltage fluctuation, harmonics, frequency, etc.) underlie certain limit values. They have to be especially evaluated according to certain basic requirements such as e.g. wind speed for wind turbines and short-circuit power (IEC 61400-21). If the limit values are kept, then all parties of the energy supply system (customer, supplier, plant operator) can expect to have the maximal operation reliability.

Up to 2003, it was required that wind power plants should immediately be disconnected from the grid in case of any disturbances. Today, the amount of energy generated by wind power plants is so high in some regions that plant operators themselves would not be able to switch off wind power plants in case of grid disturbances. Therefore, wind power plants must support the voltage in case of a voltage drop triggered off by e.g. an error in the pre-located power grid, in order to avoid an area-wide switch-off. In open air test sites the entire wind power plant can be tested with the DEWE-PNA/PFR as regards its capacity to detect a disturbance and support the voltage. Other renewables are a subject to similar regulations and have to be tested according the same standard.

Solution

Beside the standard functions of fault recorders and power quality monitors several additional measurements are necessary in order to perform a complete analysis of a renewable energy plant:

- Fault recorders and transient recorders (PFR, DFR)
- Power quality monitor and voltage recorders (PQM, VR)
- Power curve and automatic controller action
- Electrical features such as harmonics, flicker, reactive power, switching frequencies, identification of voltage drops
- Frequencies up to 1 MHz
- DC-measurements in the frequency converter
- Analysis on the side of the grid and the generator
- Voltages up to 1400 Vpeak directly measurable (DAQP-HV module)

- Long-term analysis with data base storage system and evaluation according to norms of wind energy plants and grids with automated reporting system (IEC 61400-21, EN 50160)
- Measuring wind power (wind speed, wind direction, altitude profile, turbulences, etc.)
- Mechanical parameters such as rotation and oscillation of the rotor
- Forces and impacts (rotors, blades, turbine towers, power train, etc.)
- Acoustic emission (sound power level, frequency spectrum)
- Luminance, temperature

Hardware

Only one DEWETRON measurement instrument is necessary to perform all these measurements. Based on the new DEWE-PM/PFT-series it is quite easy to define the appropriate hardware solution for you. Several power modules (three-phase systems) with up to 16 input channels supplied by the basic instrument (and 16 extra channels as an upgrade) can be used in order to, e.g., measure the low and mean voltage at the same time.

Additionally, wind speed, temperature and acoustic/noise level can be measured as well. Great emphasis was placed on stability and interference resistance when developing this instrument. The frequency converter benefits the strong common-mode rejection voltage.

Software

In addition to the common power quality functions (flicker, harmonics, voltage fluctuation, imbalance), the evaluation of wind power plants requires some special measurement methods. Beside the flicker emission values (current flicker) these are primarily the evaluation of power and harmonics at different wind speed. Especially when evaluating the frequency not only the harmonics and interharmonics are required but also the 200 Hz groups between 2 and 9 kHz. A comprehensive reporting function makes the software perfect (Plugin Wind).

DEWETRON's software packages PMT, DEWESoft POWER and the plugin "Wind" meet all the requirements and thus offer a comprehensive solution for measurement, evaluation, reporting and completely automised measuring and test procedure.

Some Details

Various Power Modules

With the DEWESoft power module an arbitrary number of power lines can be measured simultaneously. E.g. wind energy plant: UNV / UMV / UHV / UDC

FFT- Harmonics Analysis

- U, ULine, Ι, Ρ, cos ρ and Q
- Individual setup of the number of harmonics including DC (Example: sampling rate 20 kHz = max. 200 harmonics @ 50 Hz)
- Values adjusted to the actual power frequency
- Evaluation of 2-9 kHz in 200 Hz bands

Flicker

- According to IEC 61000-4-15
- PST and PLT with adjustable intervals
- Individual recalculation intervals
- Flicker emission (current flicker) according to IEC 61400-21

Uttri

IEC 61400-21 Plugin (Plugin-Wind)

- According to IEC 61400-21 (PQ measurement)
- Automatic report generation
- Flicker coefficient factors
- Harmonics, interharmonics and higher harmonics up to 9 kHz @ 200 Hz

General Vacakation	Show Calculate Report Windreport	Edit Delete												
	Windreport 61400-21 WT													
isualisations	Windreport 61400-21 W	Windreport 61	400-21 PQ Start Pa											_
Boot	I START	HOODFED FER	D DISTNAME	Harmonics L2	Harmonics L3 Interh	LI Inte	h.L2 Interh	L3 HFLI	HF12 HF1	3 Harmonic	s Max Inter	harmonics Mar	HF Max	Graphic
Demo Reports	12.01.2010	12	DEWE818	H	P.0 P.	10 8	20 P	30 P	40 P.	0 P_6	0 P	70 P.8	0 P	90
E C Standards	12.01.2010 12:00:00	E	CEVER18	2,1	0.991	0.612	0.601	0,583	0.592	0.600	0.604	0,645	0.427	0,645
	13.01.2010		DEV/EB18	2.3	0.471	0.436	0.436	0,438	0,435	0.452	0,457	0.401	0,471	0,490
Annalasta	14.01.2030		061/6818	2.5	0.375	0.389	0.386	0.380	0.381	0.392	0,402	0,450	0,417	0,450
	14.01.2010 12:00:00	1 10	061/6818	2.7	0.379	0,422	0.295	0.393	0.293	0.398	0.296	0.291	0,429	0,407
	15.01.2030	1	CEWE818	2.9	0.222	0.250	0.263	0.254	0.258	0.282	0.281	0,285	0.286	0.402
	▶ 15.01.2030		DEWER18	2.1	0.234	0,265	0.268	0,271	0,271	0.286	0,295	0,297	0.298	0,355
	16.01.2010		DEVER18	3.3	0.212	0.243	0.252	0.245	0.247	0.255	0.274	0.278	0.281	0.288
	20.04.2030-09:54:13	100	001/0818	3,5	0,294	0,206	0,214	0,219	0,227	0,237	0,252	0,268	0,251	0,268
CarffLess	20.04.2020 20:20:04	100	06/(6818	3,7	0, 167	0,586	0,195	0,193	0,207	0.218	0,226	0,236	0,225	0,236
Our FFT max	a design of the second s			3,9	0, 163	0,179	0,187	0,190	0,203	0.209	0,211	0,232	0,216	0,232
dv Qa				4,1	0,155	0,566	0,178	0,183	0,190	0,197	0,204	0,212	0,206	0,212
iny Wind				4,3	0,151	0,265	0,171	0,185	0,290	0,193	0,197	0,209	0,200	0,209
Q over P				4.5	0,145	0.565	0.171	0,178	0,185	0,193	0,197	0,212	0,197	0,212
windhamonics				4,7	0.152	0.161	0,169	0,175	0.182	0,186	0,194	0,200	0,197	0,200
Wedepot 61400-21				4,9	0,248	0,260	0,176	0,173	0,181	0,188	0,191	0,296	0,294	0,200
Windepot 61400-21 en				5,1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Windwood 61400-21 PQ				5.3	0,000	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000
				5,5	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,000
Patrophysics				5,7	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Visualisations				5,9	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Devices	1			6.1	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,000
Devices				6.3	0.000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,000
×	1			6,5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2 Heasurements								0,000	0,000	0,000	0,000	0,000		0,000
				6.9	0.000	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000
								0.000						

Remote Control

By using the remote control, instruments can be configured and data evaluated without being on site. You can do this when being in the office for example.

Acoustic/Noise Level Measurement

The residents in whose surroundings these wind power plants have been constructed must not be affected by any noise of the power plants exceeding the legally accepted limit values – noise level measurement is also made possible with the help of the DEWE-PNA/PFR: Accurate and high-resolution noise level measurements following IEC 60651, 60804, 61672. DEWESoft and its user-friendly interface convince and bring the sophisticated noise-/acoustic analysis to the customer.

GPS Sync

With the help of the GPS function several measuring instruments, that are a few kilometers away from each other (e.g. off-shore wind park and on-shore substation), can be synchronized. The highly accurate clock (100 ns) is even available in case of interference with reception. Phase measurements and angle comparisons are a typical application for this function.

Customers

- Producers of wind energy plants
- Non-productive industries in the field of wind power plants
- Companies responsible for maintenance and energy supply
- Operators of wind power plants

